Name: \qquad

Part I

1. Find the value of $25-3 x$ if $x=-2$
2. What number must be in the box in order for the equality to hold?

$$
\begin{equation*}
\frac{2}{3}+\square+\frac{1}{9}=1 \tag{1/0/0}
\end{equation*}
$$

Answer: \qquad
3. Adam buys a used moped.

The formula $y=10000 \cdot 0.8^{x}$ describes the value of moped y kronor x years later. Find the yearly percentage decrease in value.
4. Solve the equation $9 x+10^{2}=10^{3}$

Answer: \qquad

Answer: $x=$
5. $x+y=a$ and $x-y=b$

Write an expression for $a-b$ and simplify it.
\square
6. If Hanna earned 2000 kr more per month,
her monthly wage would be one and a half times as much as Nora's.
Write an expression for Hanna's monthly wage if Nora's monthly wage is $x \mathrm{kr}$.

Answer: \qquad
7. Solve the equation: $x^{\frac{1}{2}}=9$

Answer: $x=$
8. Find the coordinates for the vector $\overrightarrow{P Q}$ if $P=(2,2)$ and $Q=(2,0)$.

Answer: \qquad (0/1/0)
9. If $x \geq 2$ and $y \geq-3$, what is the least possible value that the expression $2 x+y^{2}$ can have?

Answer:
10. The three vectors in the figure has the absolute value 3, 4 and 5 respectively. Determine the length (absolute value) of the three vectors resultant. Show your solution and explain your thinking in the figure and/or the box.

11. Calculate:

$$
\frac{10^{102}+10^{100}}{10^{100}}
$$

12. Circle the correct alternative. Explain your reasoning in the box below.

13. In a triangle, the angles are given as shown.

a) Write y as a function of x.
Answer:
b) Find the range for the function.
Answer:
