...
Kurser Alla kurser Min sida Min sida Provbank Mina prov Min skola Läromedel Blogg Guider Om oss Kontakt Nationella prov Gamla högskoleprov Läxhjälp matematik Priser
Sök Mitt konto Logga ut Elev/lärare
-registrering
Logga in Köp Premium Köp Premium Prova gratis
Genom att använda den här sidan godkänner du våra användarvillkor, vår integritetspolicy och att vi använder cookies.
EXEMPEL I VIDEON
Lägg till som läxa
Lägg till som stjärnmärkt
  Lektionsrapport   Hjälp

Frågor hjälpmarkerade!

Alla markeringar försvinner.

Ta bort markeringar Avbryt
Kopiera länk Facebook X (Twitter) Repetera Rapportera Ändra status
KURSER  / 
Matematik 1
 /   Nationellt prov Ma1B

Uppgift 9-13 nationellt prov Matematik 1b , vt2012

Endast Premium- användare kan rösta.
Författare:Simon Rybrand
Rapportera fel Redigera lektion Redigera text Redigera övning Redigera video
Så hjälper Eddler dig:
Videor som är lätta att förstå Övningar & prov med förklaringar
Allt du behöver för att klara av nationella provet
Så hjälper Eddler dig:
Videor som är lätta att förstå Övningar & prov med förklaringar
Allt du behöver för att klara av nationella provet
Din skolas prenumeration har gått ut!
Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
Så funkar det för:
Elever/Studenter Lärare Föräldrar
Din skolas prenumeration har gått ut!
Förnya er prenumeration. Kontakta oss på: info@eddler.se

Lösningar till uppgifter från Nationellt prov Ma1b vt12

I den här genomgången går vi igenom uppgift 9, 10, 11, 12 och 13 på den första delen i det nationella provet till Matematik 1b. Provet genomfördes våren 2012. På den här delen var det inte tillåtet att använda sig av räknare som hjälpmedel.

Vill du själva göra uppgifter och se fullständiga lösningar kan du göra vårt Kapiteltest Ma1b NP vt12.

  1. Om Hanna tjänade $2000$2000 kr mer skulle hennes månadslön vara en och en halv gång så hög som Noras. Skriv ett uttryck för Hannas månadslön då Noras månadslön är $x$x kr.
  2.  $x+y=a$x+y=a  och  $x-y=b$xy=b. Skriv ett uttryck för $a-b$ab och förenkla uttrycket.
  3. Om $x ≥ 2$ och $y ≥ -3$, vilket är då det minsta värde som uttrycket $2x + y^2$ kan ha?
  4. Ringa in korrekt alternativ. Motivera ditt val i rutan nedan.
    Värdet av $2x + 3$ är $ [ \quad ] $ värdet av $x + 2$
    alltid mindre än
    alltid lika med
    alltid större än
    för vissa x-värden större än
  5. I en triangel är vinklarna angivna (se figur i video). a) Skriv y som en funktion av x. b) Ange funktionens värdemängd.

Formler och begrepp som används vid lösningen

Här har vi samlat i hop de formler och begrepp som är bra att kunna för att lösa uppgifterna.

Definitionsmängd

Definitionsmängd motsvarar mängden av alla möjliga värden som den oberoende variabeln kan anta för en funktion, så kallade ’invärden’. Ofta motsvarar detta alla tillåtna $x$x -värden.

Värdemängd

Värdemängd motsvarar mängden av alla värden som den beroende variabeln kan anta för en funktion, så kallade ’givna värden’. Ofta motsvarar detta alla givna, eller erhållna, $y$y -värden.

Olikheter

$x < a$ ” $x$x är mindre än $a$a ” $x > a$ ” $x$x är större än $a$a ”

$x ≤ a$ ” $x$x är mindre eller lika med  $a$a

$x ≥ a$ ” $x$x är större eller lika med  $a$a

Kommentarer

sylvia Kigundu

Hej Simon,

Kan du titta på fråga 3. jag räknat och fick svara -1. Om man -2 upphöjt med 2 = -4 och 4/(-4) = -1
Titta på den och åter till mig.

    Simon Rybrand (Moderator)

    Hej
    Tänk på att $(-2)^2=(-2)·(-2)=4$.
    Två negativa tal multiplicerat med varandra ger alltid en positiv produkt. Detta leder även till att kvadraten på ett negativt tal alltid är positivt.

    Om man vill slå ett tal som detta på sin räknare måste man tänka på att sätt en parentes runt talet innan man skriver exponenten. Annars kommer räknaren att först kvadrera tvåan och sedan ”sätta” en minus framför resultatet av kvadraten.

    Alltså $-2^2=-2·2=-4$ medan $(-2)^2=(-2)·(-2)=4$

Pedro Veenekamp

Hej!

Svar till frågan 2 verkar vara felaktigt.

y −16x −4x −4y = y -4y -16x -4x = -3y -20x

Eller?

    Simon Rybrand (Moderator)

    Japp, sista steget i förklaringen där är felaktigt, det är korrigerat.


Endast Premium-användare kan kommentera.

██████████████████████████
████████████████████████████████████████████████████

e-uppgifter (2)

  • 1. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B
    P
    PL
    M
    R 1
    K
    M NP INGÅR EJ

    Lena och Barbro samlar på frimärken. Lena har $x$x frimärken.
    Om Barbro hade haft $280$280 frimärken mindre så hade hon haft tre gånger så många som Lena.
    Vilket uttryck beskriver Barbros $y$y antal frimärken?

    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Dela med lärare
    Rättar...
  • 2. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B
    P 1
    PL
    M
    R
    K
    M NP INGÅR EJ

     $4x+4y=a$4x+4y=a och $16x+b=y$16x+b=y.
    Ställ upp och förenkla uttrycket $b-a$ba .

    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Dela med lärare
    Rättar...

c-uppgifter (1)

  • 3. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (0/1/0)
    E C A
    B
    P
    PL
    M
    R 1
    K
    M NP INGÅR EJ

     $−2\le x<0$−2x<0 och $y\ge4$y4 . Vilket är det minsta värde som $\frac{y}{x^2}$yx2  kan anta?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Dela med lärare
    Rättar...
  • Så hjälper Eddler dig:
    Videor som är lätta att förstå Övningar & prov med förklaringar
    Allt du behöver för att klara av nationella provet
    Så hjälper Eddler dig:
    Videor som är lätta att förstå Övningar & prov med förklaringar
    Allt du behöver för att klara av nationella provet
    Din skolas prenumeration har gått ut!
    Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
    Så funkar det för:
    Elever/Studenter Lärare Föräldrar
    Din skolas prenumeration har gått ut!
    Förnya er prenumeration. Kontakta oss på: info@eddler.se
Så hjälper Eddler dig:
Videor som är lätta att förstå Övningar & prov med förklaringar
Allt du behöver för att klara av nationella provet
Så hjälper Eddler dig:
Videor som är lätta att förstå Övningar & prov med förklaringar
Allt du behöver för att klara av nationella provet
Din skolas prenumeration har gått ut!
Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
Så funkar det för:
Elever/Studenter Lärare Föräldrar
Din skolas prenumeration har gått ut!
Förnya er prenumeration. Kontakta oss på: info@eddler.se