...
Kurser Alla kurser Min sida Min sida Provbank Mina prov Min skola Läromedel Blogg Guider Om oss Kontakt Nationella prov Läxhjälp matematik Priser
Sök Mitt konto Logga ut Elev/lärare
-registrering
Logga in Köp Premium Köp Premium Prova gratis
Genom att använda denna sidan godkänner du våra användarvillkor, vår integritetspolicy och att vi använder cookies.
EXEMPEL I VIDEON
Lägg till som läxa
Lägg till som stjärnmärkt
  Lektionsrapport   Hjälp

Frågor hjälpmarkerade!

Alla markeringar försvinner.

Ta bort markeringar Avbryt
Kopiera länk Facebook Twitter Repetera Rapportera Ändra status
KURSER  / 
Matematik Högstadiet
 /   Geometri – Högstadiet

Sidovinklar och vertikalvinklar

Endast Premium- användare kan rösta.
Författare:Simon Rybrand
Rapportera fel Redigera lektion Redigera text Redigera övning Redigera video
Så hjälper Eddler läromedel dig:
Fördjupande texter 6000+ övningsfrågor Öva på nationella prov
Så hjälper Eddler läromedel dig:
Fördjupande texter 6000+ övningsfrågor Fullständiga förklaringar
Ett modernt läromedel för att klara av nationella provet
Din skolas prenumeration har gått ut!
Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
Så funkar det för:
Elever/Studenter Lärare Föräldrar
Din skolas prenumeration har gått ut!
Förnya er prenumeration. Kontakta oss på: info@eddler.se

När linjer skär eller utgår från varandra skapas ett antal olika typer av vinklar. Dessa vinklar brukar vara enkla att känna igen och kan exempelvis vara lika med varandra eller tillsammans $180°$180°. Här går vi igenom dessa typer av vinklar och vilka egenskaper som de har.

Sidovinklar

Sidovinklar

Vinklarna $v_1$v1 och $v_2$v2 ligger bredvid varandra utmed en rät linje och är avdelade med ett gemensamt vinkelben. Då är de tillsammans $v_1+v_2=180°$v1+v2=180°. Dessa typer av vinklar kallas för sidovinklar.

Vertikalvinklar Premium

vertikalvinklar

När två räta linjer skär varandra skapas det fyra vinklar mellan linjerna. När två vinklar $v_1$v1 och $v_2$v2 är motstående mot varandra så kallas de för vertikalvinklar. De är då lika stora. I bilden ovan är även $v_3$v3 och $v_4$v4 vertikalvinklar.

Likbelägna vinklar, alternatvinklar och supplementvinklar Premium

Likbelägna vinklar, alternativinklar och supplementvinklar

När två parallella linjer $L_1$L1 och $L_2$L2 skärs av en tredje linje, en så kallad transversal, så skapas det ett antal olika vinklar. Dessa brukar kallas för likbelägna vinklar, alternatvinklar och supplementvinklar. I bilden här ovan gäller följande.

Vinklarna $v_1$v1 och $v_2$v2 är likbelägna vinklar och de är lika stora.

Vinklarna $v_2$v2 och $v_3$v3 är alternatvinklar och de är lika stora.

Vinklarna $v_2$v2 och $v_4$v4 är supplementvinklar och de är tillsammans $180°$180°.

Exempel Premium

Nedan visas ett antal exempel med lösningar där vi använder det känner till om ovan nämnda vinklar.

Exempel 1

Exempel 1 sidovinklar

Bestäm storleken av vinkeln $v_1$v1.

Lösning:

Vinklarna är sidovinklar och är tillsammans $180°$180°.

 $v_1=180°-125°=55°$v1=180°125°=55°.

Exempel 2

Exempel 2 supplementvinklar

Bestäm storleken av vinkeln $v_1$v1.

Lösning:

Dessa två vinklar är supplementvinklar så då gäller att $v_1+115°=180°$v1+115°=180° 

Alltså kan vi beräkna vinkeln $v_1$v1 genom

 $v_1=180°-115°=65°$v1=180°115°=65° 

Exempel 3

Två vinklar $v_1$v1 och $v_2$v2 är sidovinklar. Vinkeln $v_1$v1 är dubbelt så stor som vinkeln $v_2$v2. Hur stora är vinklarna?

Lösning:

De två vinklarna är tillsammans $180°$180°. Vi kan beskriva $v_1$v1 som

 $v_1=2v_2$v1=2v2.

Vi ställer nu upp följande ekvation.

 $2v_2+v_2=180°$2v2+v2=180°

 $3v_2=180$3v2=180 

 $v_2=\frac{180°}{3}=60°$v2=180°3 =60°.

Då $v_1$v1 är dubbelt så stor så är denna vinkel $120°$120°.

Svar: Vinklarna är $v_1=120°$v1=120° och $v_2=60°$v2=60°

Kommentarer


Endast Premium-användare kan kommentera.

██████████████████████████
████████████████████████████████████████████████████

e-uppgifter (6)

  • 1. Premium

    Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B 1
    P
    PL
    M
    R
    K
    M NP

    Hur stor är vinkeln $x$x ?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    • Rättad
    • +1
    • Rättad
    Se mer: Vinklar
    Dela med lärare
    Rättar...
  • 2. Premium

    Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B 1
    P
    PL
    M
    R
    K
    M NP

    Hur stor är den andra sidovinkeln om den ena är $30$30°?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    • Rättad
    • +1
    • Rättad
    Se mer: Vinklar
    Dela med lärare
    Rättar...
  • 3. Premium

    Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B 1
    P
    PL
    M
    R
    K
    M NP

    Hur stor är vinkeln $x$x ?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    • Rättad
    • +1
    • Rättad
    Se mer: Vinklar
    Dela med lärare
    Rättar...
  • Är du ny här? Med Eddler Premium får du:
    800+ lektioner 6000+ övningsfrågor Öva på nationella prov
    Är du ny här? Med Eddler Premium får du:
    800+ lektioner 6000+ övningsfrågor Öva på nationella prov
    Allt du behöver för att klara av nationella provet
    Din skolas prenumeration har gått ut!
    Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
    Så funkar det för:
    Elever/Studenter Lärare Föräldrar
    Din skolas prenumeration har gått ut!
    Förnya er prenumeration. Kontakta oss på: info@eddler.se
  • 4. Premium

    Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B 1
    P
    PL
    M
    R
    K
    M NP

    Hur stor är vinkeln $x$x ?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    • Rättad
    • +1
    • Rättad
    Se mer: Vinklar
    Dela med lärare
    Rättar...
  • 5. Premium

    Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B 1
    P
    PL
    M
    R
    K
    M NP

    Bestäm vinkeln $x$x då  $L_1$L1 och  $L_2$L2 är parallella.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    • Rättad
    • +1
    • Rättad
    Se mer: Vinklar
    Dela med lärare
    Rättar...
  • 6. Premium

    Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B 1
    P
    PL
    M
    R
    K
    M NP

    Vilket påstående är sant?

    Bedömningsanvisningar/Manuell rättning
    • Rättad
    • +1
    • Rättad
    Se mer: Vinklar
    Dela med lärare
    Rättar...

c-uppgifter (1)

  • 7. Premium

    Rapportera fel Ändra till korrekt
    (0/1/0)
    E C A
    B
    P
    PL 1
    M
    R
    K
    M NP

    Den större sidovinkeln är tre gånger så stor som den mindre sidovinkeln. Hur stor är den mindre sidovinkeln?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    • Rättad
    • +1
    • Rättad
    Dela med lärare
    Rättar...

a-uppgifter (1)

  • 8. Premium

    Rapportera fel Ändra till korrekt
    (0/0/2)
    E C A
    B
    P
    PL 1
    M 1
    R
    K
    M NP

    vertikalvinklar

    Två räta linjer skär varandra och fyra vinklar skapas enligt figuren ovan. Vertikalvinklarna $v_1$v1 och $v_2$v2 är tillsammans $40\text{ }\%$40 % mindre än vertikalvinklarna $v_3$v3 och $v_4$v4 tillsammans.

    Hur stor är $v_1$v1?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    • Rättad
    • +1
    • Rättad
    Dela med lärare
    Rättar...
Så hjälper Eddler läromedel dig:
Fördjupande texter 6000+ övningsfrågor Öva på nationella prov
Så hjälper Eddler läromedel dig:
Fördjupande texter 6000+ övningsfrågor Fullständiga förklaringar
Ett modernt läromedel för att klara av nationella provet
Din skolas prenumeration har gått ut!
Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
Så funkar det för:
Elever/Studenter Lärare Föräldrar
Din skolas prenumeration har gått ut!
Förnya er prenumeration. Kontakta oss på: info@eddler.se