...
Kurser Alla kurser Min sida Provbank Mina prov Min skola Läromedel Förälder Blogg Guider Om oss Kontakt Läxhjälp matemtaik
  Sök Mitt konto Logga ut Elev/lärare
-registrering
Logga in Köp Premium Köp Premium Prova gratis
Genom att använda denna sidan godkänner du våra användarvillkor, vår integritetspolicy och att vi använder cookies.
EXEMPEL I VIDEON   Lektionsrapport   Hjälp

Frågor hjälpmarkerade!

Alla markeringar försvinner.

Ta bort markeringar Avbryt
Kopiera länk Facebook Twitter Repetera Rapportera Ändra status
Matematik 4
 /   Trigonometri och trigonometriska funktioner

Trigonometriska funktioner problemlösning 1

Endast Premium- användare kan rösta.
Författare:Simon Rybrand
Rapportera fel Redigera lektion Redigera text Redigera övning Redigera video

Här följer en sammanfattning av de olika begreppen för trigonometriska funktioner.

Amplitud

Är du ny här? Så här funkar Eddler Premium
  • 600+ videolektioner till gymnasiet och högstadiets matte.
  • 4000+ övningsfrågor med fullständiga förklaringar.
  • Heltäckande för din kursplan. Allt på ett ställe.
  • Träning inför nationella prov och högskoleprovet.
Prova i gratis i 7 dagar, sedan endast 89 kr/mån.
Ingen bindningstid. Avsluta när du vill.
Din skolas prenumeration har gått ut!
Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
Så funkar det för:
Elever/Studenter Lärare Föräldrar
Din skolas prenumeration har gått ut!
Förnya er prenumeration. Kontakta oss på: info@eddler.se

Innebörden av begreppet amplitud är avståndet i $y$y – led från kurvans jämviktsläge, eller mittenläget lodrätt sett, till det högsta eller minsta värdet för funktionen. Detta motsvaras i formeln av koefficient till $\sin$sineller $\cos$cos. För att beräkna amplituden kan vi ställa upp följande kvot.

 $\text{Amplitud}=$Amplitud=  $\frac{\text{Största funktionsvärdet – Minsta funktionsvärdet}}{2}$Största funktionsvärdet – Minsta funktionsvärdet2  

Period

En perioden motsvarar den längd på intervallet i $x$x -led som uppstår innan kurvan upprepar sig. Detta motsvaras i formeln av koefficienten till vinkeln. Om man till exempel vill beräkna perioden utifrån funktionen $ y=sin(kx) $ så får man perioden genom att beräkna

 $\text{Periodicitet}=$Periodicitet=  $\frac{360^{\circ}}{k}$360k  

Detsamma gäller för funktionen för cosinus.

Förskjutning uppåt/nedåt

Förskjutningen uppåt eller nedåt avgörs av om funktionsuttrycket har en konstantterm. Om denna konstant är positiv så förskjuts kurvan uppåt och är den negativ förskjuts kurvan nedåt.

$ y=sin(x )+d $

Om konstanten  $d>0$d>0  förskjuts kurvan uppåt.
Om konstanten  $d<0$d<0  förskjuts förskjuts kurvan nedåt.

Detsamma gäller för funktionen för cosinus.

Förskjutning höger/vänster

Förskjutningar åt höger eller vänster av kurvan avgörs av om det finns en konstant inuti argumentet till sinus/cosinusfunktionen. Alltså om funktionsuttrycket ser ut så här.

$ y=sin(x + v) $

Om  $v>0$v>0  förskjuts kurvan åt vänster.
Om  $v<0$v<0  förskjuts kurvan åt höger.

Detsamma gäller för funktionen för cosinus.

Exempel i videon

  • Skissa grafen till funktionen $ f(x)=2cos(x-\pi) $.
  • En akties kurs i kronor/aktie varierar upp och ned enligt funktionen $ f(x)=30sinx+60 $ där $x$ är antalet dagar efter årsskiftet och $ f(x) $ ger priset på aktien. Hur många procent ökar aktien om du köper aktien vid dess lägsta värde och säljer vid dess högsta värde?
  • Bestäm konstanterna $ A, \, B \, och \, C $ till funktionen $ f(x)=A+BcosCx $ med hjälp av grafen (se bild i video).

Kommentarer

backis

måste nog hålla med första inlägget här, för att kunna göra maximala vinsten (200%) kan man inte enbart handla inom den givna perioden (1 år), utan måste kunna handla över ”nyåret”. visserligen räcker det att man har handlingsfrihet över 0,5 period men detta spann måste sträcka sig mellan två perioder (år), t.ex. -90 dagar till +90 dagar, eller mellan dag 270 till dag 450. Alltså räcker 1 period för att göra 200% vinst, men inte om denna sträcker mellan 0-360 dagar.

Goeran Hoegosta

Jag vet inte om det var uttalat men om du menar att ett år var en enda period (eventuellt fel beror på just denna premiss) så kommer det lägsta värdet EFTER det högsta värdet och du bör isf max kunna tjäna 30 enheter aka 50%. Skulle det varit -30sinx + 60 så skulle ju det blivit spegelvänt och jag hade hållt med om 200% ökning. Nu blir det ju 50%!

    Simon Rybrand (Moderator)

    Hej!
    Nej exemplet var nog inte tänkt att syfta till att en period var exakt ett år utan endast att (kanske för översiktligt) beräkna ökningen från det minsta till det högsta värdet efter årsskiftet och att man köper på lägsta värdet 30 och säljer på högsta värdet 90. Vi skall fundera på om exemplet kan förtydligas.


Endast Premium-användare kan kommentera.

e-uppgifter (2)

  • 1. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Nedan är grafen till en funktion  $y=4+B\text{ }\cos x$y=4+B cosx  utritad.

    exempel1-trigonometriska-funktioner  

    Använd figuren och bestäm konstanten $B$.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Dela med lärare
    Rättar...
  • 2. Premium

    Rapportera fel

    Nedan är grafen till en funktion $y=3\sin \left(x-a\right)$ utritad.exempel2-trigonometriska-funktioner

    Använd figuren och bestäm konstanten $a$.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Dela med lärare
    Rättar...
Är du ny här? Så här funkar Eddler Premium
  • 600+ videolektioner till gymnasiet och högstadiets matte.
  • 4000+ övningsfrågor med fullständiga förklaringar.
  • Heltäckande för din kursplan. Allt på ett ställe.
  • Träning inför nationella prov och högskoleprovet.
Prova i gratis i 7 dagar, sedan endast 89 kr/mån.
Ingen bindningstid. Avsluta när du vill.
Din skolas prenumeration har gått ut!
Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
Så funkar det för:
Elever/Studenter Lärare Föräldrar
Din skolas prenumeration har gått ut!
Förnya er prenumeration. Kontakta oss på: info@eddler.se