...
Kurser Alla kurser Min kurs Min sida Min sida Provbank Mina prov Läromedel Blogg Hjälp & Guider Om oss Kontakt Nationella prov Gamla högskoleprov Screening Priser
Sök Mitt konto Logga ut Elev/lärare
-registrering
Logga in Köp Premium Köp Premium Prova gratis
Genom att använda den här sidan godkänner du våra användarvillkor, vår integritetspolicy och att vi använder cookies.
EXEMPEL I VIDEON
Lägg till som läxa
Lägg till som stjärnmärkt
  Lektionsrapport   Hjälp

Frågor hjälpmarkerade!

Alla markeringar försvinner.

Ta bort markeringar Avbryt
Kopiera länk Facebook X (Twitter) Repetera Rapportera Ändra status
KURSER  / 
Matematik Högstadiet
 /   Sidovinklar och vertikalvinklar – Högstadiet

Sidovinklar och vertikalvinklar - Högstadiet

Endast Premium- användare kan rösta.
Författare:Simon Rybrand
Rapportera fel Redigera lektion Redigera text Redigera övning Redigera video Skapa thumbnails
Så hjälper Eddler dig:
Videor som är lätta att förstå Övningar & prov med förklaringar
Allt du behöver för att klara av provet
Så hjälper Eddler dig:
Videor som är lätta att förstå Övningar & prov med förklaringar
Allt du behöver för att klara av provet
Din skolas prenumeration har gått ut!
Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
Så funkar det för:
Elever/Studenter Lärare Föräldrar
Din skolas prenumeration har gått ut!
Förnya er prenumeration. Kontakta oss på: info@eddler.se

Inom geometri använder man ofta begreppen sidovinklar och vertikalvinklar för att bestämma andra okända vinklar i en figur.

Sidovinklar är två vinklar som tillsammans bildar en rät linje, det vill säga deras vinkelsumman är $180^{\circ}$180.
Vertikalvinklar är motstående vinklar som uppstår när två linjer skär varandra. Vertikalvinklar är alltid lika stora.

Vinklar

Där linjer skär varandra uppstår ett antal olika vinklar. Dessa vinklar har fått olika namn utifrån hur de relaterar till varandra och linjerna som skapar dem.

Vi kommer här visa att vissa vinklar är lika stora eller tillsammans har vinkelsumman $180°$180° och olika vinklars egenskaper. Två vinklar du verkligen bör lägga på minnet är sidovinklar och vertikalvinklar.

Sidovinklar och Supplementvinklar

Sidovinklar

Vinklarna $v_1$v1 och $v_2$v2 ligger bredvid varandra utmed en rät linje och är avdelade med ett gemensamt vinkelben. Då är de tillsammans $v_1+v_2=180°$v1+v2=180°. Då vinkelsumman är $180^{\circ}$180 kallas de supplementvinklar. Om vinklarna delar ett vinkelben är de även så kallade sidovinklar.

 

Exempel 1

Exempel 1 sidovinklar

Bestäm storleken av vinkeln $v_1$v1.

Lösning

Vinklarna är sidovinklar och är tillsammans $180°$180°.

$v_1=180°-125°=55°$v1=180°125°=55°.

Vertikalvinklar

vertikalvinklar

När två räta linjer skär varandra skapas det fyra vinklar mellan linjerna. När två vinklar $v_1$v1 och $v_2$v2 är motstående mot varandra så kallas de för vertikalvinklar. De är då lika stora. I bilden ovan är även $v_3$v3 och $v_4$v4 vertikalvinklar.

Likbelägna vinklar, alternatvinklar och supplementvinklar

När två parallella linjer $L_1$L1 och $L_2$L2 skärs av en tredje linje, en så kallad transversal, så skapas det ett antal olika vinklar.

Likbelägna vinklar, alternativinklar och supplementvinklar

Dessa kan delas upp i likbelägna vinklar, alternatvinklar och supplementvinklar. I bilden här ovan gäller följande.

Vinklarna $v_1$v1 och $v_2$v2 är likbelägna vinklar och de är lika stora.

Vinklarna $v_1$v1 och $v_3$v3 är alternatvinklar och de är lika stora.

Vinklarna $v_2$v2 och $v_4$v4 är supplementvinklar och de är tillsammans $180°$180°.

Nedan visas ett antal exempel med lösningar där vi använder det vi känner till om vinklarna ovan.

Exempel 2

Exempel 2 supplementvinklar

Bestäm storleken av vinkeln $v_1$v1.

Lösning

Dessa två vinklar är supplementvinklar så då gäller att $v_1+115°=180°$v1+115°=180°

Alltså kan vi beräkna vinkeln $v_1$v1 genom

$v_1=180°-115°=65°$v1=180°115°=65°

Exempel 3

Två vinklar $v_1$v1 och $v_2$v2 är sidovinklar och supplementvinklar. Vinkeln $v_1$v1 är dubbelt så stor som vinkeln $v_2$v2. Hur stora är vinklarna?

Lösning

De två vinklarna är tillsammans $180°$180°. Vi kan beskriva $v_1$v1 som

$v_1=2v_2$v1=2v2.

Vi ställer nu upp följande ekvation.

$2v_2+v_2=180°$2v2+v2=180°

$3v_2=180$3v2=180

$v_2=$v2=$\frac{180°}{3}=$180°3 =$60°$60°

Då $v_1$v1 är dubbelt så stor så är denna vinkel $120°$120°.

Vinklarna är $v_1=120°$v1=120° och $v_2=60°$v2=60°,

En del har väldigt lätt för att se olika samband mellan vinklar i geometriska figurer och andra svårare. Men med en del träning brukar det i alla fall bli lättare.

Kommentarer


Endast Premium-användare kan kommentera.

██████████████████████████
████████████████████████████████████████████████████

e-uppgifter (7)

  • 1. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B 1
    P
    PL
    M
    R
    K
    M EXIT NP INGÅR EJ Uppgift från prov

    Hur stor är vinkeln $x$x ?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Vinklar - Högstadiet
    Dela med lärare
    Rättar...
  • 2. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B 1
    P
    PL
    M
    R
    K
    M EXIT NP INGÅR EJ Uppgift från prov

    Hur stor är den andra sidovinkeln om den ena är $30$30° och de två vinklarna är supplementvinklar?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Vinklar - Högstadiet
    Dela med lärare
    Rättar...
  • 3. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B 1
    P
    PL
    M
    R
    K
    M EXIT NP INGÅR EJ Uppgift från prov

    Hur stor är vinkeln $x$x ?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Vinklar - Högstadiet
    Dela med lärare
    Rättar...
  • Så hjälper Eddler dig:
    Videor som är lätta att förstå Övningar & prov med förklaringar
    Allt du behöver för att klara av provet
    Så hjälper Eddler dig:
    Videor som är lätta att förstå Övningar & prov med förklaringar
    Allt du behöver för att klara av provet
    Din skolas prenumeration har gått ut!
    Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
    Så funkar det för:
    Elever/Studenter Lärare Föräldrar
    Din skolas prenumeration har gått ut!
    Förnya er prenumeration. Kontakta oss på: info@eddler.se
  • 4. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B 1
    P
    PL
    M
    R
    K
    M EXIT NP INGÅR EJ Uppgift från prov

    Hur stor är vinkeln $x$x ?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Vinklar - Högstadiet
    Liknande uppgifter: Geometri vinklar
    Dela med lärare
    Rättar...
  • 5. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B 1
    P
    PL
    M
    R
    K
    M EXIT NP INGÅR EJ Uppgift från prov

    Bestäm vinkeln $x$x då  $L_1$L1 och  $L_2$L2 är parallella.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Vinklar - Högstadiet
    Dela med lärare
    Rättar...
  • 6. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B 1
    P
    PL
    M
    R
    K
    M EXIT NP INGÅR EJ Uppgift från prov

    Bestäm vinkeln $x$x då  $L_1$L1 och  $L_2$L2 är parallella.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Vinklar - Högstadiet
    Dela med lärare
    Rättar...
  • 7. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B 1
    P
    PL
    M
    R
    K
    M EXIT NP INGÅR EJ Uppgift från prov

    Vilket påstående är sant?

    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Vinklar - Högstadiet
    Dela med lärare
    Rättar...

c-uppgifter (1)

  • 8. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (0/1/0)
    E C A
    B
    P
    PL 1
    M
    R
    K
    M EXIT NP INGÅR EJ Uppgift från prov

    Vi sidovinklar bildar tillsammans en rak vinkel. Den större sidovinkeln är tre gånger så stor som den mindre sidovinkeln. Hur stor är den mindre sidovinkeln?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Liknande uppgifter: sidovinkel sidovinklar
    Dela med lärare
    Rättar...

a-uppgifter (1)

  • 9. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (0/0/2)
    E C A
    B
    P
    PL 1
    M 1
    R
    K
    M EXIT NP INGÅR EJ Uppgift från prov

    vertikalvinklar

    Två räta linjer skär varandra och fyra vinklar skapas enligt figuren ovan. Vertikalvinklarna $v_1$v1 och $v_2$v2 är tillsammans $40\text{ }\%$40 % mindre än vertikalvinklarna $v_3$v3 och $v_4$v4 tillsammans.

    Hur stor är $v_1$v1?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Dela med lärare
    Rättar...
Så hjälper Eddler dig:
Videor som är lätta att förstå Övningar & prov med förklaringar
Allt du behöver för att klara av provet
Så hjälper Eddler dig:
Videor som är lätta att förstå Övningar & prov med förklaringar
Allt du behöver för att klara av provet
Din skolas prenumeration har gått ut!
Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
Så funkar det för:
Elever/Studenter Lärare Föräldrar
Din skolas prenumeration har gått ut!
Förnya er prenumeration. Kontakta oss på: info@eddler.se