...
Kurser Alla kurser Min sida Provbank Mina prov Min skola Läromedel Förälder Blogg Guider Om oss Kontakt Läxhjälp matemtaik
  Sök Mitt konto Logga ut Elev/lärare
-registrering
Logga in Köp Premium Köp Premium Prova gratis
Genom att använda denna sidan godkänner du våra användarvillkor, vår integritetspolicy och att vi använder cookies.
EXEMPEL I VIDEON   Lektionsrapport   Hjälp

Frågor hjälpmarkerade!

Alla markeringar försvinner.

Ta bort markeringar Avbryt
Kopiera länk Facebook Twitter Repetera Rapportera Ändra status
Matematik Högstadiet
 /   Geometri – Högstadiet

Vinklar

Endast Premium- användare kan rösta.
Författare:Simon Rybrand Anna Karp
Rapportera fel Redigera lektion Redigera text Redigera övning Redigera video

I den här lektionen går vi igenom grunderna i den del av geometrin som behandlar vinklar. Du lär dig vad en vinkel är och vilka begrepp som beskriver en vinkel. Dessutom går vi igenom begreppen spetsig vinkel, rät vinkel, trubbig vinkel och rak vinkel.

Vad är en vinkel

Är du ny här? Så här funkar Eddler Premium
  • 600+ videolektioner till gymnasiet och högstadiets matte.
  • 4000+ övningsfrågor med fullständiga förklaringar.
  • Heltäckande för din kursplan. Allt på ett ställe.
  • Träning inför nationella prov och högskoleprovet.
Prova i gratis i 7 dagar, sedan endast 89 kr/mån.
Ingen bindningstid. Avsluta när du vill.
Din skolas prenumeration har gått ut!
Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
Så funkar det för:
Elever/Studenter Lärare Föräldrar
Din skolas prenumeration har gått ut!
Förnya er prenumeration. Kontakta oss på: info@eddler.se

Vinklar i cirkel

En vinkel beskriver vridningen, eller mellanrummet, mellan två räta linjer eller en del av en cirkel. När man skall beskriver vridningen använder man enheten grader som betecknas med symbolen °. Detta sätt att beskriva vinklar utgår ifrån en cirkel, där ett helt varv runt en cirkel motsvaras av $360°$. Ett halvt varv blir då 180° och en fjärdedels varv $90°$.

Vinkelns olika delar

Vinkelben, vinkelbåge och vinkelspets

En vinkel kan delas upp i begreppen vinkelben, vinkelbåge och vinkelspets. Två räta linjer som möter varandra i en punkt kallas för vinkelben och där de möts hittar vi vinkelspetsen. Vinkelbågen är den vinkel i grader som krävs för att vrida sig från det ena benet till det andra.

Spetsiga, räta, trubbiga och raka vinklar

Det finns ett antal olika typer av vinklar med namn som säger något om i vilket intervall vinkelns storlek befinner sig i eller vilken storlek som vinkeln har.

Spetsiga vinklar

Spetsig vinkel

Om en vinkel är mindre än $90^{\circ}$90 så kallas den för spetsig. En sådan vinkel $v$v är befinner sig i ett storleksintervall 0° < v < 90°.

Räta vinklar

Rät vinkel

En rät vinkel är lika med $90^{\circ}$90 och en sådan vinkel betecknas med raka streck.

Trubbiga vinklar

Trubbig vinkel

En trubbig vinkel är större än $90^{\circ}$90 men mindre än $180^{\circ}$180 (rak vinkel). En sådan vinkel $v$v är befinner sig i ett storleksintervall 90° < v < 180°.

Raka vinklar

Rak vinkel

En rak vinkel är lika med $180^{\circ}$180.

Exempel

Exempel 1

Bestäm storleken av vinkeln $v$v.

Exempel 1 vinklar

Lösning

Vi beräknar vinkelns storlek genom

 $v=180^{\circ}-52^{\circ}=128^{\circ}$v=18052=128

Vinkelns storlek är $v=128^{\circ}$v=128

Exempel 2

Bestäm storleken av vinkeln $v$v

Exempel 2 vinklar

Lösning

De fyra vinklarna tillsammans är $360^{\circ}$360. Så vi kan beräkna $v$v genom

 $v=360^{\circ}-105^{\circ}-45^{\circ}-125^{\circ}=85^{\circ}$v=36010545125=85.

Vinkelns storlek är $v=85^{\circ}$v=85.

Exempel 3

Bestäm storleken av vinkeln $v$v.

Exempel 3 vinklar

Lösning

De tre vinklarna tillsammans är $90^{\circ}$90 då vi har en rak vinkel. Så vi kan beräkna $v$v genom

 $v=90^{\circ}-44^{\circ}-22^{\circ}=24^{\circ}$v=904422=24.

Vinkelns storlek är $v=24^{\circ}$v=24.

Markering av lika stora vinklar

För att förtydliga att olika vinklar eller längder i en figur är lika stora är det vanligt att man markera dem. Detta görs genom att man drar små streck på lika stora vinklar eller sidor. Vinklar markerade med samma antal sträck, ger att vinklarna är lika stora. Sidor markerade med samma antal streck, ger att sidorna är lika långa. 

Markerade vinklar

I figuren är vinkel $B$B och $C$C lika stora. Sidan  $AB$AB  och sidan  $AC$AC är lika långa.

Om en vinkel är markerad med ett streck och en annan med två innebär det inte att vinkel två är dubbelt så stor. Bara att de har olika storlek.

En sida och en vinkel som är markerade med samma antal streck är inte lika stora.

Exempel 4

Bestäm vinkel  $C$C då vinkel  $B$B är lika med  $65^{\circ}$65

Markerade vinklar

Lösning

Då vinkel $B$B och $C$C är markerade med samma antal streck, innebär det att de är lika stora. Därmed är även vinkel  $C=65^{\circ}$C=65 

Bisektriser

Vid beräkningar kan det ibland varar av intresse att använda sig av en bisektris. Bisektriser är en rät linjen som delar en vinkel i två lika stora delar. Följande gäller för bisektriser.

Bisektris

En bisektris delar en av triangelns vinklar i två lika delar.

Bisektriserna skär varandra i en punkt som motsvarar den inskrivna cirkelns centrum.

En inskriven cirkel är en cirkel vars periferi, alltså omgivande linje/omkrets, tangerar (”snuddar vid”), triangels tre sidor.

Här följer ett exempel med bisektriser.

Exempel 5

Bestäm vinkeln  $x$x då linjen  $AD$AD  är en bisektris.

Bisektris

Lösning

Då sträckan $AB$AB är en bisektris innebär det att den delar vinkel $\angle BAC$BAC i två lika stora delar. Då vinkel $\angle BAD$BAD är $31^{\circ}$31  innebär det att vinkel $\angle BAC$BAC är dubbelt så stor, alltså $62^{\circ}$62

Då sidorna $AB$AB och $BC$BC är markerade med samma antal streck, innebär det att triangeln är likbent. Därför är vinklarna $\angle BAC$BAC och $\angle ACB$ACB lika stora, vilket leder till att  $x=62^{\circ}$x=62 

Exempel i videon

  • Exempel på vinklarna $360°$, $180°$ och $90°$ i en cirkel.
  • Exempel på trubbiga, spetsiga, räta och raka vinklar.
  • Bestäm storleken av vinkeln v i två geometriska konstruktioner (se bild i videon)

Kommentarer


Endast Premium-användare kan kommentera.

e-uppgifter (7)

  • 1. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Hur många grader motsvarar ett helt varv i en cirkel?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Dela med lärare
    Rättar...
  • 2. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Hur många grader är en rät vinkel?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Dela med lärare
    Rättar...
  • 3. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Vad kallas en vinkel som är mindre än $90^{\circ}$90 ?

    Dela med lärare
    Rättar...
  • Är du ny här? Så här funkar Eddler Premium
    • 600+ videolektioner till gymnasiet och högstadiets matte.
    • 4000+ övningsfrågor med fullständiga förklaringar.
    • Heltäckande för din kursplan. Allt på ett ställe.
    • Träning inför nationella prov och högskoleprovet.
    Prova i gratis i 7 dagar, sedan endast 89 kr/mån.
    Ingen bindningstid. Avsluta när du vill.
    Din skolas prenumeration har gått ut!
    Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
    Så funkar det för:
    Elever/Studenter Lärare Föräldrar
    Din skolas prenumeration har gått ut!
    Förnya er prenumeration. Kontakta oss på: info@eddler.se
  • 4. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Vad kallas en vinkel som är större än $90^{\circ}$90 ?

    Dela med lärare
    Rättar...
  • 5. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Bestäm storleken av vinkeln $v$v.

    Övning 1 vinklar

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Dela med lärare
    Rättar...
  • 6. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Bestäm storleken av vinkeln $v$v.

    Övning 2 vinklar

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Dela med lärare
    Rättar...
  • 7. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Bestäm storleken av vinkeln $v$v.

    Övning 3 vinklar

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Dela med lärare
    Rättar...

c-uppgifter (1)

  • 8. Premium

    Rapportera fel
    (0/2/0)
    ECA
    B
    P1
    PL1
    M
    R
    K

    Hur många grader är det mellan visarna på en klocka då klockan visar sju?

    Utgå från minutvisaren och gå medurs till timvisaren. Alltså vinkel för det röda området.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Dela med lärare
    Rättar...

a-uppgifter (1)

  • 9. Premium

    Rapportera fel
    (0/0/2)
    ECA
    B
    P
    PL1
    M
    R1
    K

    Din klass har fått i uppgift att rita en vinkel som är så nära $33,75^{\circ}$33,75 som möjligt. Till att lösa uppgiften har ni bara tillgång till ett cirkulärt papper och en sax till hjälp.

    Din lärare ger tipset att du kan vika pappret så att du får fram rätt vinkel och frågar;

    ”-Hur många gånger ska du vika pappret för att kunna få fram rätt vinkel?”

    Dela med lärare
    Rättar...
Är du ny här? Så här funkar Eddler Premium
  • 600+ videolektioner till gymnasiet och högstadiets matte.
  • 4000+ övningsfrågor med fullständiga förklaringar.
  • Heltäckande för din kursplan. Allt på ett ställe.
  • Träning inför nationella prov och högskoleprovet.
Prova i gratis i 7 dagar, sedan endast 89 kr/mån.
Ingen bindningstid. Avsluta när du vill.
Din skolas prenumeration har gått ut!
Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
Så funkar det för:
Elever/Studenter Lärare Föräldrar
Din skolas prenumeration har gått ut!
Förnya er prenumeration. Kontakta oss på: info@eddler.se