...
Kurser Alla kurser Min kurs Min sida Min sida Provbank Mina prov Läromedel Blogg Guider Om oss Kontakt Nationella prov Gamla högskoleprov Läxhjälp matematik Priser
Sök Mitt konto Logga ut Elev/lärare
-registrering
Logga in Köp Premium Köp Premium Prova gratis
Genom att använda den här sidan godkänner du våra användarvillkor, vår integritetspolicy och att vi använder cookies.
EXEMPEL I VIDEON
Lägg till som läxa
Lägg till som stjärnmärkt
  Lektionsrapport   Hjälp

Frågor hjälpmarkerade!

Alla markeringar försvinner.

Ta bort markeringar Avbryt
Kopiera länk Facebook X (Twitter) Repetera Rapportera Ändra status
KURSER  / 
Matematik 3b
 /   Nationellt prov Ma3b HT 2012

Nationellt prov Matematik 3b ht12 Del A - Muntligt

Endast Premium- användare kan rösta.
Författare:Simon Rybrand

██████████████████████████
████████████████████████████████████████████████████

X-uppgifter (4)

  • Till eleven - Information inför det muntliga delprovet

    Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater, din lärare och ditt läromedel när du löser uppgiften. Din muntliga redovisning börjar med att du presenterar vad uppgiften handlar om och sedan får du beskriva och förklara din lösning. Du ska redovisa alla steg i din lösning. Däremot, om du har gjort samma beräkning flera gånger (till exempel i en värdetabell) så kan det räcka med att du redovisar några av beräkningarna. Din redovisning är tänkt att ta maximalt $5$5 minuter och ska göras för en mindre grupp klasskamrater och din lärare.

    Den uppgift som du får ska i huvudsak lösas för hand, algebraiskt. Det kan hända att du behöver en miniräknare för att göra en del beräkningar men du ska inte hänvisa till grafritande och/eller symbolhanterande funktioner på räknaren (om du har en sådan typ av räknare) när du redovisar din lösning.

    Vid bedömningen av din muntliga redovisning kommer läraren att ta hänsyn till:

    • hur fullständig, relevant och strukturerad din redovisning är,

    • hur väl du beskriver och förklarar tankegångarna bakom din lösning,

    • hur väl du använder den matematiska terminologin.

    Hur fullständig, relevant och strukturerad din redovisning är
    Din redovisning ska innehålla de delar som behövs för att dina tankar ska gå att följa och förstå. Det du säger bör komma i lämplig ordning och inte innehålla någonting onödigt. Den som lyssnar ska förstå hur beräkningar, beskrivningar, förklaringar och slutsatser hänger ihop med varandra.

    Hur väl du beskriver och förklarar tankegångarna bakom din lösning
    Din redovisning bör innehålla både beskrivningar och förklaringar. Man kan enkelt säga att en beskrivning svarar på frågan ”Hur?” och en förklaring svarar på frågan ”Varför?”. Du beskriver något när du till exempel berättar hur du har gjort en beräkning. Du förklarar något när du motiverar varför du till exempel kunde använda en viss formel.

    Hur väl du använder den matematiska terminologin
    När du redovisar bör du använda ett språk som innehåller matematiska termer, uttryckssätt och symboler som är lämpliga utifrån den uppgift du har löst. Matematiska termer är ord som till exempel ”exponent”, ”funktion” och ”graf”.
    Ett exempel på ett matematiskt uttryckssätt är att $x^2$x2 utläses ”$x$x upphöjt till $2$2” eller ”$x$x  i kvadrat”. Några exempel på matematiska symboler är $pi$π och $fleft(xright)$ƒ (x), vilka utläses ”pi” och ”$f$ƒ   av $x$x

  • 1. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (3/1/3)
    E C A
    B
    P
    PL
    M
    R
    K 3 1 3
    M NP INGÅR EJ

    Figuren nedan visar ett rätblock med sidorna $\frac{x}{3}$x3 $\left(6-x\right)$(6x) och $\left(6-x\right)$(6x) l.e.
    Använd derivata och beräkna rätblockets största möjliga volym.

     

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Dela med lärare
    Rättar...
  • 2. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (3/1/3)
    E C A
    B
    P
    PL
    M
    R
    K 3 1 3
    M NP INGÅR EJ

    För funktionen $f$ƒ  gäller att $f\left(x\right)=x^3+5x^2+7$ƒ (x)=x3+5x2+7 

    a) Bestäm $f’\left(4\right)$ƒ (4) med hjälp av deriveringsregler.

    b) Bestäm $f’\left(4\right)$ƒ (4) med hjälp av ändringskvot*.

    c) Förklara, gärna med hjälp av en figur, varför du får olika svar i a)- och b)-uppgiften.

    *Kommentar: Ändringskvot kallas även för förändringskvot eller differenskvot.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Derivatans Definition
    Dela med lärare
    Rättar...
  • 3. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (3/1/3)
    E C A
    B
    P
    PL
    M
    R
    K 3 1 3
    M NP INGÅR EJ

    Intill en motorväg ska man anlägga en $2,0$2,0 m hög jordvall som bullerskydd. Jordvallens form kan beskrivas med en andragradskurva $y=2,0-0,125x^2$y=2,00,125x2

    Beräkna hur många $m^3$m3 jord som kommer att behövas per kilometer jordvall.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Integralkalkylens fundamentalsats
    Dela med lärare
    Rättar...
  • Så hjälper Eddler dig:
    Videor som är lätta att förstå Övningar & prov med förklaringar
    Allt du behöver för att klara av nationella provet
    Så hjälper Eddler dig:
    Videor som är lätta att förstå Övningar & prov med förklaringar
    Allt du behöver för att klara av nationella provet
    Din skolas prenumeration har gått ut!
    Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
    Så funkar det för:
    Elever/Studenter Lärare Föräldrar
    Din skolas prenumeration har gått ut!
    Förnya er prenumeration. Kontakta oss på: info@eddler.se
  • 4. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (3/1/3)
    E C A
    B
    P
    PL
    M
    R
    K 3 1 3
    M NP INGÅR EJ

    Andrea och Beata tänker börja spara pengar på var sitt konto där årsräntan är $2\text{ }\%$2 %. Andrea tänker sätta in en engångssumma på $15000$15000 kr i slutet av år $2012$2012. Beata tänker sätta in $1000$1000 kr per år, med start i slutet av år $2012$2012.

    Hur mycket pengar har Andrea respektive Beata på sina konton omedelbart efter Beatas sista insättning i slutet av år $2026$2026?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Geometriska talföljdens summa
    Dela med lärare
    Rättar...
Så hjälper Eddler dig:
Videor som är lätta att förstå Övningar & prov med förklaringar
Allt du behöver för att klara av nationella provet
Så hjälper Eddler dig:
Videor som är lätta att förstå Övningar & prov med förklaringar
Allt du behöver för att klara av nationella provet
Din skolas prenumeration har gått ut!
Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
Så funkar det för:
Elever/Studenter Lärare Föräldrar
Din skolas prenumeration har gått ut!
Förnya er prenumeration. Kontakta oss på: info@eddler.se