...
Kurser Alla kurser Min sida Min sida Provbank Mina prov Min skola Läromedel Blogg Guider Om oss Kontakt Nationella prov Gamla högskoleprov Läxhjälp matematik Priser
Sök Mitt konto Logga ut Elev/lärare
-registrering
Logga in Köp Premium Köp Premium Prova gratis
Genom att använda den här sidan godkänner du våra användarvillkor, vår integritetspolicy och att vi använder cookies.
EXEMPEL I VIDEON
Lägg till som läxa
Lägg till som stjärnmärkt
  Lektionsrapport   Hjälp

Frågor hjälpmarkerade!

Alla markeringar försvinner.

Ta bort markeringar Avbryt
Kopiera länk Facebook Twitter Repetera Rapportera Ändra status
KURSER  / 
Matematik 4
 /   Trigonometri och trigonometriska funktioner

Trigonometriska funktioner problemlösning 2

Endast Premium- användare kan rösta.
Författare:Simon Rybrand
Rapportera fel Redigera lektion Redigera text Redigera övning Redigera video

Kommentarer

Ahmad Abu khamis

Hej
Tolka vad y'(10) betyder….
y'(10) =-0,45 ( grad/timme )
Så betyder det att vattentemperaturen sjunker med 0,45 grader per timme.
Är det rätt?

diana guney

hej
jag har en fråga som är
visa att : 1/sinx = sinx / 1+cosx + 1/tanx

På facit står det att 1/tanx blir cosx/sinx
hur går det till?

    Simon Rybrand (Moderator)

    Eftersom $tanx = \frac{sinx}{cosx}$ så gäller att
    $\frac{1}{tanx} = \frac{\,\, 1 \,\,}{\frac{sinx}{cosx}} = 1 \big/ \frac{sinx}{cosx} = $
    $\frac11 \big/ \frac{sinx}{cosx} = \frac{cosx}{sinx}$

    Tänk här på använda dig av regler för division av bråkräkning för att ”vända” på nämnaren.

filosofia

Bestäm alla lokala min- och maxpunkter till f(x) = sin(x + π/2) och skissera grafen. Jag löste den halvvägs genom att få derivatan vilket var 1. därefter vet jag inte hur man fortsätta.

    Simon Rybrand (Moderator)

    Du kan lösa den på lite olika vis. Antingen deriverar du funktionen och sätter derivatan till 0 för att lösa den ekvationen. Eller så kan du konstatera att funktionen har amplituden 1 och lösa ekvationerna då du sätter $sin(x + π/2)=1$ och $sin(x + π/2)=-1$

    Enkelt att använda sig av för att bestämma derivatan är att
    $ sin(x + π/2) = cosx $

    Derivatan blir då
    $ f´(x)=-sinx $
    Lös ekvationen $f´(x)=0$:
    $-sinx=0⇔$
    $sinx=0$
    Lösningarna ges då av
    1) $x=arcsin(0)+n⋅2π$
    $x=n⋅2π$

    eller
    2)$x=π-arcsin(0)+n⋅2π$
    $x=π+n⋅2π$

sara94

skulle du kunna hjälpa mig med denna uppgift : Andrew arbetar som gelbgjutare (hantverkare som gjuter i mässing och annan gul metall) i Skottland där han driver sitt eget smyckesföretag. Han har bestämt sig för att tillverka smycken i form av trianglar, men han kan inte riktigt bestämma sig för hur de ska se ut. Han har också vissa krav som gör det svårt för honom att veta hur smyckena över huvud taget kan se ut. Detta ska du hjälpa honom med.

Han har bestämt sig för några mått på smycket:

1) En sida, vi kan kalla den p, ska vara 4,4 cm.
2) En annan sida, vi kan kalla den q, ska vara 3,8 cm.
3) Vinkeln som är motstående till sidan p, vi kan kalla den P, ska vara 39°.
Beteckningar: Vinkeln P är motstående till sidan p, vinkeln Q är motstående till sidan q och vinkeln R är motstående till sidan r.

backis

bra och tydliga genomgångar!! en sak undrar jag dock; HUR vet man när man ska räkna med grader eller med radianer?!

    Simon Rybrand (Moderator)

    Det är oftast så att du använder radianer vid följande tillfällen:
    – När det uttryckligen poängteras i en uppgift att det skall svaras i radianer.
    – När du har $ \pi $ angivet i uppgiftens beskrivning.
    – När du jobbar med Trigonometriska funktioners derivata.


Endast Premium-användare kan kommentera.

██████████████████████████
████████████████████████████████████████████████████

e-uppgifter (3)

  • 1. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B
    P 1
    PL
    M
    R
    K
    M NP INGÅR EJ

    Vilken derivata har $ f(x) = x^2 – cos^2x $?

    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Dela med lärare
    Rättar...
  • 2. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B
    P 1
    PL
    M
    R
    K
    M NP INGÅR EJ

    Vilken derivata har $ f(x) = sin^2(2x) $?

    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Dela med lärare
    Rättar...
  • 3. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B
    P
    PL 1
    M
    R
    K
    M NP INGÅR EJ

    Temperaturen $y \, °C$ i en stad under ett långvarigt högtryck visade sig följa funktionen $y=24-6\sin 15t$ där $t$ är tiden i timmar efter $24.00$ det första dygnet under högtrycket.

    Vilken är den lägsta temperaturen under högtrycket?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Dela med lärare
    Rättar...
  • Så hjälper Eddler dig:
    Videor som är lätta att förstå Övningar & prov med förklaringar
    Allt du behöver för att klara av nationella provet
    Så hjälper Eddler dig:
    Videor som är lätta att förstå Övningar & prov med förklaringar
    Allt du behöver för att klara av nationella provet
    Din skolas prenumeration har gått ut!
    Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
    Så funkar det för:
    Elever/Studenter Lärare Föräldrar
    Din skolas prenumeration har gått ut!
    Förnya er prenumeration. Kontakta oss på: info@eddler.se
Så hjälper Eddler dig:
Videor som är lätta att förstå Övningar & prov med förklaringar
Allt du behöver för att klara av nationella provet
Så hjälper Eddler dig:
Videor som är lätta att förstå Övningar & prov med förklaringar
Allt du behöver för att klara av nationella provet
Din skolas prenumeration har gått ut!
Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
Så funkar det för:
Elever/Studenter Lärare Föräldrar
Din skolas prenumeration har gått ut!
Förnya er prenumeration. Kontakta oss på: info@eddler.se