...
Kurser Alla kurser Min sida Min sida Provbank Mina prov Min skola Läromedel Blogg Guider Om oss Kontakt Nationella prov Gamla högskoleprov Läxhjälp matematik Priser
Sök Mitt konto Logga ut Elev/lärare
-registrering
Logga in Köp Premium Köp Premium Prova gratis
Genom att använda den här sidan godkänner du våra användarvillkor, vår integritetspolicy och att vi använder cookies.
EXEMPEL I VIDEON
Lägg till som läxa
Lägg till som stjärnmärkt
  Lektionsrapport   Hjälp

Frågor hjälpmarkerade!

Alla markeringar försvinner.

Ta bort markeringar Avbryt
Kopiera länk Facebook Twitter Repetera Rapportera Ändra status
KURSER  / 
Matematik 4
 /   Nationellt prov Ma4 VT 2013

Nationellt prov Matematik 4 vt 2013 DEL B och C

Endast Premium- användare kan rösta.
Författare:Simon Rybrand

██████████████████████████
████████████████████████████████████████████████████

X-uppgifter (20)

  • 1. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B
    P 1
    PL
    M
    R
    K
    M NP INGÅR EJ

    Derivera $f(x)=\sin(2x)$ƒ (x)=sin(2x) 

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Kedjeregeln
    Dela med lärare
    Rättar...
  • 2. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B
    P 1
    PL
    M
    R
    K
    M NP INGÅR EJ

    Derivera $g(x)=(4x+1)^5$g(x)=(4x+1)5 

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Kedjeregeln
    Dela med lärare
    Rättar...
  • 3. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B 1
    P
    PL
    M
    R
    K
    M NP INGÅR EJ

    Figuren visar ett komplext talplan där talen $z_1$z1 och $z_2$z2 är markerade.
    Bestäm $\overline{z_2}$z2 .

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Komplexa talplanet
    Liknande uppgifter: komplexatal komplexatalplanet konjugat
    Dela med lärare
    Rättar...
  • Så hjälper Eddler dig:
    Videor som är lätta att förstå Övningar & prov med förklaringar
    Allt du behöver för att klara av nationella provet
    Så hjälper Eddler dig:
    Videor som är lätta att förstå Övningar & prov med förklaringar
    Allt du behöver för att klara av nationella provet
    Din skolas prenumeration har gått ut!
    Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
    Så funkar det för:
    Elever/Studenter Lärare Föräldrar
    Din skolas prenumeration har gått ut!
    Förnya er prenumeration. Kontakta oss på: info@eddler.se
  • 4. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B
    P 1
    PL
    M
    R
    K
    M NP INGÅR EJ

    Figuren visar ett komplext talplan där talen $z_1$z1 och $z_2$z2 är markerade.
    Bestäm $z_1+z_2$z1+z2 

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Komplexa talplanet
    Liknande uppgifter: komplexatal komplexatalplanet
    Dela med lärare
    Rättar...
  • 5. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/0/0)
    E C A
    B 1
    P
    PL
    M
    R
    K
    M NP INGÅR EJ

    Ange den lodräta asymptoteten till $f(x)=$ƒ (x)= $\frac{x-3}{x+2}$x3x+2 

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Asymptoter
    Liknande uppgifter: asymptot
    Dela med lärare
    Rättar...
  • 6. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (0/1/0)
    E C A
    B 1
    P
    PL
    M
    R
    K
    M NP INGÅR EJ

    Figuren visar grafen till funktionen $f$ƒ .
    För vilket värde på $a$a i intervallet $0\le a\le10$0a10 antar $\int_0^af\left(x\right)dx$0aƒ (x)dx sitt största värde?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Areor under x – axeln
    Liknande uppgifter: integraler
    Dela med lärare
    Rättar...
  • 7. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (0/1/1)
    E C A
    B 1 1
    P
    PL
    M
    R
    K
    M NP INGÅR EJ

    För vilka vinklar i intervallet $0°<$<$v$v$<90^{\circ}$<90   gäller att $\sin3v<$sin3v<$\frac{1}{2}$12 ?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Enhetscirkeln
    Liknande uppgifter: Enhetscirkeln trigonometri
    Dela med lärare
    Rättar...
  • 8. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (0/0/1)
    E C A
    B 1
    P
    PL
    M
    R
    K
    M NP INGÅR EJ

    Ange en kontinuerlig funktion $f$ƒ  som är definierad för alla $x$x och har värdemängden $-1\le f(x)\le7$1ƒ (x)7.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Amplitud och Period
    Liknande uppgifter: Trigonometriska funktioner
    Dela med lärare
    Rättar...
  • 9. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (2/0/0)
    E C A
    B
    P 1
    PL
    M
    R 1
    K
    M NP INGÅR EJ

    Några elever har fått i uppgift att beräkna $\int_1^e\frac{1}{x}dx$1e1x dx 
    Agnes får svaret $e$e
    Ingela får svaret $0$0.
    Kerstin får svaret $1$1.

    Har någon av dem rätt? Motivera ditt svar.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion:
    Liknande uppgifter: integraler
    Dela med lärare
    Rättar...
  • 10. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (2/0/0)
    E C A
    B
    P
    PL 2
    M
    R
    K
    M NP INGÅR EJ

    För två komplexa tal $z_1$z1 och $z_2$z2 gäller att

    •  $z_1\cdot z_2=7+i$z1·z2=7+i 
    •  $z_1=3-i$z1=3i 

      Bestäm $z_2$z2 på formen $a+bi$a+bi 

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Räkna med Komplexa Tal
    Liknande uppgifter: komplexa tal
    Dela med lärare
    Rättar...
  • 11. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (2/0/0)
    E C A
    B
    P
    PL
    M
    R 2
    K
    M NP INGÅR EJ

    Visa att $\cos^2x$cos2x $\left(\frac{\sin^2x}{\cos^2x}+1\right)=1$(sin2xcos2x +1)=1   för alla $x$x där uttrycken är definierade.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Trigonometriska ettan
    Dela med lärare
    Rättar...
  • 12. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (0/2/0)
    E C A
    B
    P
    PL
    M
    R 2
    K
    M NP INGÅR EJ

     Visa att $\sqrt{2}\cos(x+\frac{\pi}{4})=\cos x-\sin x$2cos(x+π4 )=cosxsinx 

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Trigonometriska formler
    Dela med lärare
    Rättar...
  • 13. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/1/0)
    E C A
    B
    P 1 1
    PL
    M
    R
    K
    M NP INGÅR EJ

    Lös ekvationen $\cos2x=$cos2x=$\frac{\sqrt{3}}{2}$32   

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Trigonometriska ekvationer
    Dela med lärare
    Rättar...
  • 14. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (1/3/2)
    E C A
    B 1 1 1
    P 1
    PL 1
    M
    R
    K 1
    M NP INGÅR EJ

    För funktionen $f$ƒ  gäller att $f(x)=$ƒ (x)= $\frac{x+1}{x-3}$x+1x3   .

    a) Ange asymptoterna till $f$ƒ  .

    b) Skissa grafen till $x$x och dess asymptoter.

    c) Lös olikheten $|f(x)|>3$|ƒ (x)|>3 

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Asymptoter - Problemlösning
    Liknande uppgifter: asymptoter
    Dela med lärare
    Rättar...
  • 15. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (0/2/0)
    E C A
    B
    P 2
    PL
    M
    R
    K
    M NP INGÅR EJ

    Ekvationen $z^p=i$zp=i ska undersökas för olika värden på heltalet $p$p.
    För vissa värden på heltalet $p$p är $z_1=\cos9°+i\text{ }\sin9°$z1=cos+i sin en lösning till ekvationen $z^p=i$zp=i.

    Visa att detta gäller för $p=50$p=50, det vill säga visa att $z_1$z1 är en lösning till $z^{50}=i$z50=i .

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Liknande uppgifter: De moivres formel trigonometri
    Dela med lärare
    Rättar...
  • 16. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (0/0/2)
    E C A
    B
    P
    PL 2
    M
    R
    K
    M NP INGÅR EJ

    Ekvationen $z^p=i$zp=i ska undersökas för olika värden på heltalet $p$p.
    För vissa värden på heltalet $p$p är $z_1=\cos9°+i\text{ }\sin9°$z1=cos+i sin en lösning till ekvationen $z^p=i$zp=i.

    Bestäm alla heltalsvärden på $p$p för vilka $z_1$z1 är en lösning till ekvationen $z^p=i$zp=i 

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Liknande uppgifter: De moivres formel
    Dela med lärare
    Rättar...
  • 17. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (0/2/0)
    E C A
    B
    P
    PL
    M
    R 2
    K
    M NP INGÅR EJ

    För polynomet $p$p gäller att $p(z)=z^5+4z^3-2z^2-8$p(z)=z5+4z32z28.
    Visa att $(z^2+4)$(z2+4) är en faktor i polynomet $p$p.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Polynomdivision
    Liknande uppgifter: polynomdivision
    Dela med lärare
    Rättar...
  • 18. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (0/1/2)
    E C A
    B
    P 1
    PL 1
    M
    R
    K 1
    M NP INGÅR EJ

    Lös ekvationen $z^5+4z^3-2z^2-8=0$z5+4z32z28=0

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Polynomekvationer
    Liknande uppgifter: komplexa tal polynom polynomekvation
    Dela med lärare
    Rättar...
  • 19. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (0/0/2)
    E C A
    B
    P
    PL 2
    M
    R
    K
    M NP INGÅR EJ

    Beräkna $\int_0^{^{\frac{\pi}{6}}}\left(2\text{ }\sin x+5\right)\cos x\text{ }dx$0π6 (2 sinx+5)cosx dx 

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion:
    Liknande uppgifter: Integral
    Dela med lärare
    Rättar...
  • 20. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (0/0/3)
    E C A
    B
    P
    PL
    M
    R 2
    K 1
    M NP INGÅR EJ

    Lasse och Niklas ska lösa följande uppgift:

    Undersök om funktionen $f(x)=$ƒ (x)=$\frac{1}{2x-5}$12x5   antar något största värde då $x\ge0$x0.

    Lasse löser uppgiften så här:

    Niklas säger att Lasses svar är fel eftersom funktionen kan anta större värden än $\frac{-1}{5}$15 . Till exempel antar funktionen värdet $1$1 då $x=3$x=3.

    Utred vilket fel Lasse gör i sin lösning och lös den givna uppgiften.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Se mer:Videolektion: Asymptoter
    Dela med lärare
    Rättar...
Så hjälper Eddler dig:
Videor som är lätta att förstå Övningar & prov med förklaringar
Allt du behöver för att klara av nationella provet
Så hjälper Eddler dig:
Videor som är lätta att förstå Övningar & prov med förklaringar
Allt du behöver för att klara av nationella provet
Din skolas prenumeration har gått ut!
Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
Så funkar det för:
Elever/Studenter Lärare Föräldrar
Din skolas prenumeration har gått ut!
Förnya er prenumeration. Kontakta oss på: info@eddler.se