...
Kurser Alla kurser Min sida Min sida Provbank Mina prov Min skola Läromedel Blogg Guider Om oss Kontakt Nationella prov Gamla högskoleprov Läxhjälp matematik Priser
Sök Mitt konto Logga ut Elev/lärare
-registrering
Logga in Köp Premium Köp Premium Prova gratis
Genom att använda den här sidan godkänner du våra användarvillkor, vår integritetspolicy och att vi använder cookies.
EXEMPEL I VIDEON
Lägg till som läxa
Lägg till som stjärnmärkt
  Lektionsrapport   Hjälp

Frågor hjälpmarkerade!

Alla markeringar försvinner.

Ta bort markeringar Avbryt
Kopiera länk Facebook X (Twitter) Repetera Rapportera Ändra status
KURSER  / 
Matematik 3b
 /   Genomgångar nationella prov Ma3b

Uppgift 11, 12, 13 - Nationellt prov Matematik 3b vt 2012 Del C

Endast Premium- användare kan rösta.
Författare:Simon Rybrand
Rapportera fel Redigera lektion Redigera text Redigera övning Redigera video
Så hjälper Eddler dig:
Videor som är lätta att förstå Övningar & prov med förklaringar
Allt du behöver för att klara av nationella provet
Så hjälper Eddler dig:
Videor som är lätta att förstå Övningar & prov med förklaringar
Allt du behöver för att klara av nationella provet
Din skolas prenumeration har gått ut!
Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
Så funkar det för:
Elever/Studenter Lärare Föräldrar
Din skolas prenumeration har gått ut!
Förnya er prenumeration. Kontakta oss på: info@eddler.se

I den här videon går vi igenom uppgift 11, 12 och 13 från det nationella provet i kursen matematik 3b från hösten 2012.

NpMa3b vt 2012 Uppgift 11

Beräkna $\int\limits_1^2\,6x^2\,dx$ algebraiskt.

NpMa3b vt 2012 Uppgift 12

För funktionen f gäller att $f(x) = x^3 – 3x^2$.
Bestäm med hjälp av derivata koordinaterna för eventuella maximi-, minimi- och terrasspunkter för funktionens graf.
Bestäm också karaktär för respektive punkt, det vill säga om det är en maximi-, minimi- eller terrasspunkt.

NpMa3b vt 2012 Uppgift 13

För funktionerna $f$ och $g$ gäller att $f(x)=5x^2+3x$ och $g(x) = x^2 + 8x$.
a) Bestäm det värde på $x$ där grafen till $f$ har lutningen $18$.
b) Grafen till $g$ har en tangent i den punkt där $x = 6$. Bestäm koordinaterna för tangentens skärningspunkt med $x$-axeln.

Nationellt prov matematik 3b uppgift 11, 12 och 13

I den här lektionen går vi igenom och löser uppgift 11, 12 och 13 från det nationella provet till matematik 3b. Några av de formler och begrepp som används i lösningarna hittar du nedan. Följ länkarna till lektioner i respektive om du vill öva fler liknande uppgifter eller se en video om teorin bakom.

Integralkalkylens fundamentalsats

$\int\limits_a^b f(x) dx = \left[ F(x) \right]_a^b = F(b) – F(a)$

Deriveringsregler polynom

  1. Derivatan av en konstant är noll. Dvs om $f(x) = 300$ är $f'(x) = 0$.
  2. Om $ f(x) = a \cdot x^k $ är $ f'(x) = k \cdot a \cdot x^{k-1} $.
  3. Du får derivera ”term för term” i ett polynom.

Kommentarer

rahand shaker

Hej!
Hur ser följande steg ut för att få ut primitiva funktionen av uppg 11?

    Anna Eddler Redaktör (Moderator)

    Hej Rahand,

    gå till lektionen om Primitiva funktioner för att få en mer utförlig förklaring och fler liknade uppgifter att träna på, men kort:

    $f(x)=6x^2$ är en polynom funktion. Den primitiva funktionen får vi då genom att addera exponenten med ett och dividera med den nya exponenten.

    $F(x)=\frac {6x^{2+1}}{2+1}+C=\frac {6x^{3}}{3}+C=2x^3$


Endast Premium-användare kan kommentera.

██████████████████████████
████████████████████████████████████████████████████

e-uppgifter (3)

  • 1. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (2/0/0)
    E C A
    B
    P 2
    PL
    M
    R
    K
    M NP INGÅR EJ

    Beräkna $ \int\limits_{0}^{3} \frac{x^2}{3} \,dx $ algebraiskt. (Svara med heltal utan enhet)

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Dela med lärare
    Rättar...
  • 2. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (2/0/0)
    E C A
    B
    P
    PL 2
    M
    R
    K
    M NP INGÅR EJ

    Bestäm tangentens lutning i $x=1$x=1 för funktionen  $f(x)=2x^3+3x^2$ƒ (x)=2x3+3x2 

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Dela med lärare
    Rättar...
  • 3. Premium

    Redigera uppgift Rapportera fel Ändra till korrekt
    (3/0/0)
    E C A
    B
    P 3
    PL
    M
    R
    K
    M NP INGÅR EJ

    Funktionen  $f$ƒ   gäller att $f(x)=2x^3+3x^2$ƒ (x)=2x3+3x2.

    Undersök med derivatan om funktionen har en maximipunkt och ge i så fall dess koordinater.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Bedömningsanvisningar/Manuell rättning
    Klicka i rutorna och bedöm ditt svar.
    • Rättad
    • +1
    • Rättad
    Dela med lärare
    Rättar...
  • Så hjälper Eddler dig:
    Videor som är lätta att förstå Övningar & prov med förklaringar
    Allt du behöver för att klara av nationella provet
    Så hjälper Eddler dig:
    Videor som är lätta att förstå Övningar & prov med förklaringar
    Allt du behöver för att klara av nationella provet
    Din skolas prenumeration har gått ut!
    Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
    Så funkar det för:
    Elever/Studenter Lärare Föräldrar
    Din skolas prenumeration har gått ut!
    Förnya er prenumeration. Kontakta oss på: info@eddler.se
Så hjälper Eddler dig:
Videor som är lätta att förstå Övningar & prov med förklaringar
Allt du behöver för att klara av nationella provet
Så hjälper Eddler dig:
Videor som är lätta att förstå Övningar & prov med förklaringar
Allt du behöver för att klara av nationella provet
Din skolas prenumeration har gått ut!
Påminn din lärare om att förnya eller fortsätt plugga med Eddler på egen hand.
Så funkar det för:
Elever/Studenter Lärare Föräldrar
Din skolas prenumeration har gått ut!
Förnya er prenumeration. Kontakta oss på: info@eddler.se